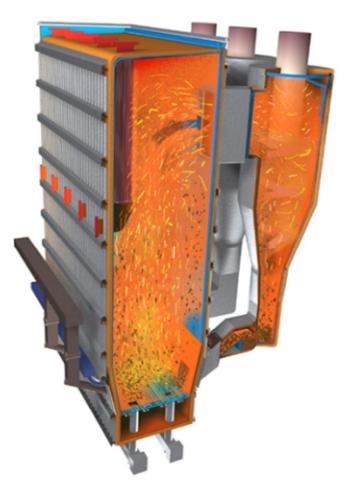


High efficient multi-fuel CYMIC concept for biomass, rejects and coal for Hamburger Hungaria

28.4.2016

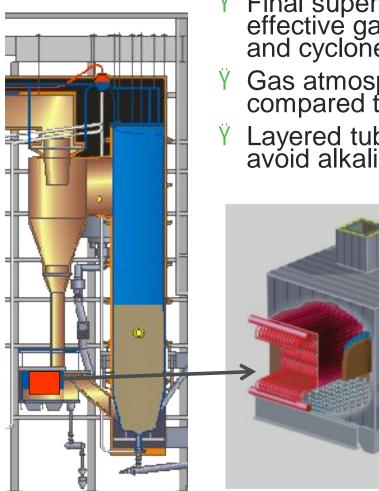
Katriina Jalkanen


Valmet Technologies Oy

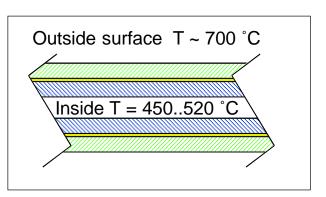
CYMIC – Multi-Fuel Design Concept: general and case example Hamburger Hungaria

Presentation outline:

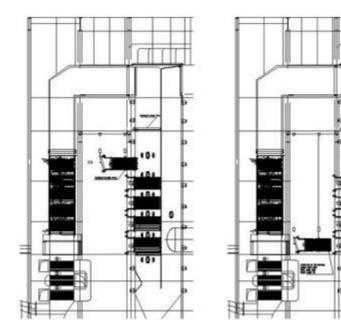
- Fuel based challenges
- Solutions to selected challenges
- Fuel based CFB concepts
- Bio / Multifuel concept
 - Design features
- Case example: Hamburger Hungaria Power project
 - Design data
 - Design features
 - Main components
- Conclucions



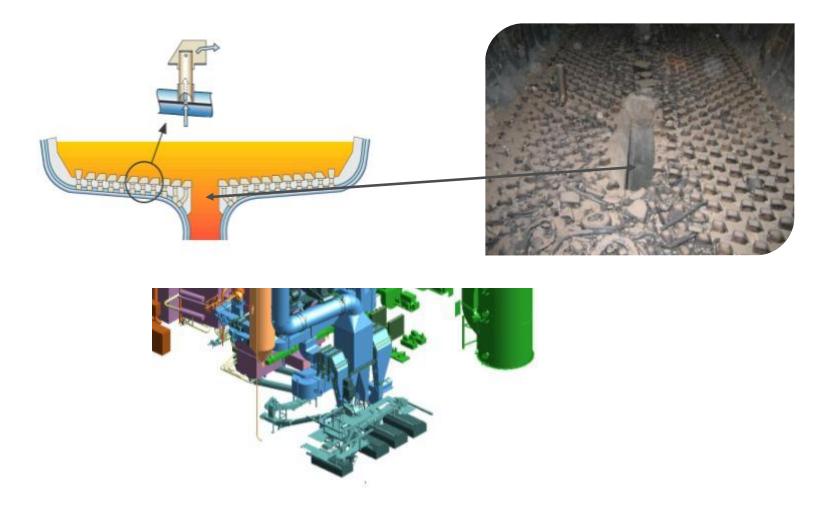
Fuel based challenges

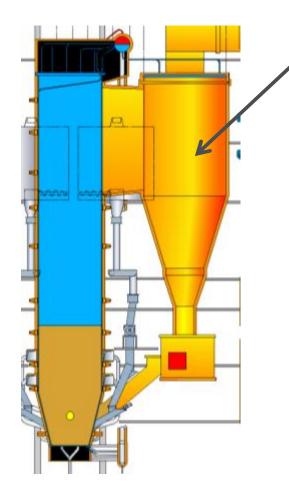

	FUEL				
Challenge field	Fossil	Wood	Agro	Recycled wood	SRF
High temp corrosion	0	0. <mark>1</mark>	1	1	2
Mid temp corrosion	0	0	0	2	2
Cold end corrosion	0	0. <mark>1</mark>	1	2	2
Superheater fouling	0. <mark>2</mark>	0. <mark>1</mark>	2	1	2
Cold end cleaning	0	0	1	1	1
Bed agglomeration	0. <mark>2</mark>	0. <mark>1</mark>	2	1	1
Loop agglomeration	0. <mark>2</mark>	0. <mark>1</mark>	2	0	1
High bottom ash/debris flow	> 0. <mark>2</mark>	0. <mark>1</mark>	1	12	2
High fly ash flow	0. <mark>2</mark>	0	0	1	1
Back pass erosion	1	0	0	1	2
Emissions	> 1	1	1	1	1

Challenge: High temp corrosion Solution: Fluidized bed heat exchanger


- Final superheater is located in loop seal, effective gas flow isolation from both furnace and cyclone side
- Ÿ Gas atmosphere is much less corrosive compared to furnace or back pass location
- Y Layered tube design for SRF applications to avoid alkali chlorine condensation

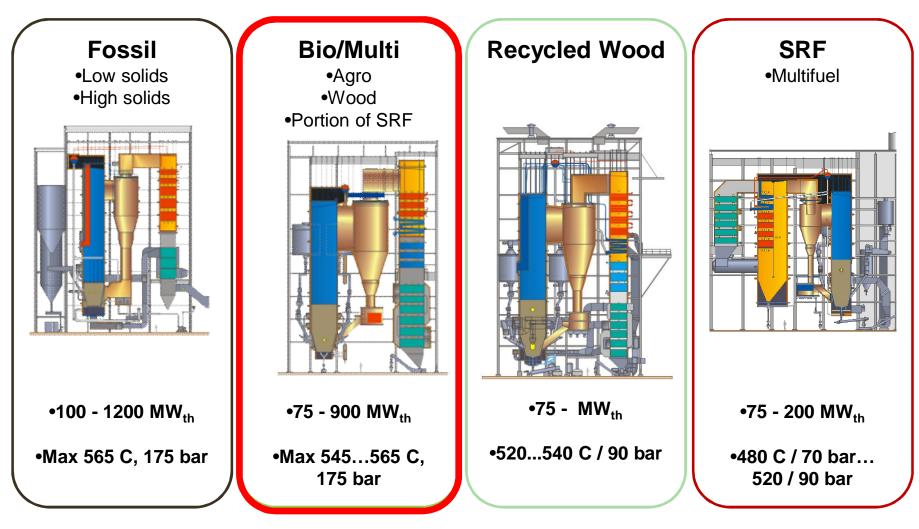
Challenge: Mid temp corrosion Solution: Easily replaceable superheaters


- To minimize the downtime of the boiler when Pb induced corrosion cannot be fully prevented
- 5 days replacing time per bundle



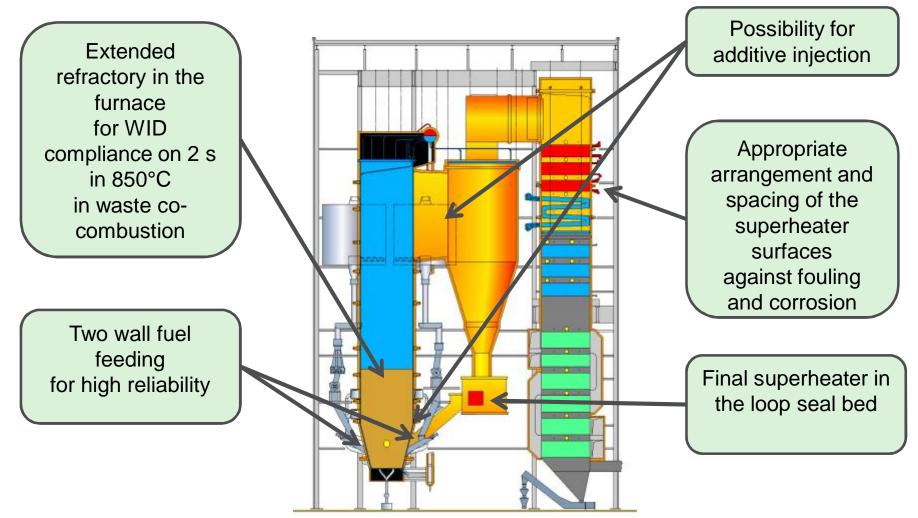
Challenge: High debris flow / bed agglomeration Solution: Grid design and bed ash recirculation

Challenge: Erosion / Emissions Solution: Cyclone with high collection efficiency

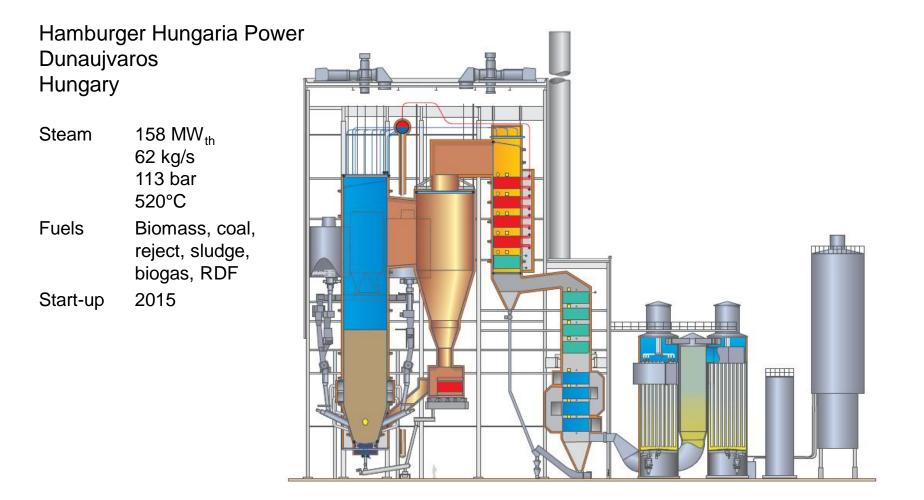


Benefits of high collection efficiency:

- Ÿ Fine particles stay in hot loop circulation:
 - Even temperature profile
 - High combustion efficiency
 - Low NOx
 - High inherent SO₂ capture by fuel alkalis
 - Low erosion in furnace and back pass (critical for PbCl induced corrosion/erosion)
- Ÿ High bottom ash/fly ash flow ratio
 - Reduced dumping cost
- Y Minimized make-up sand consumption



Fuel based CYMIC CFB concepts



CYMIC for Bio / Multifuel Special design features

CYMIC boiler Circulating Fluidized Bed (CFB) technology

Design fuels

CYMIC boiler - Circulating Fluidized Bed (CFB) technology

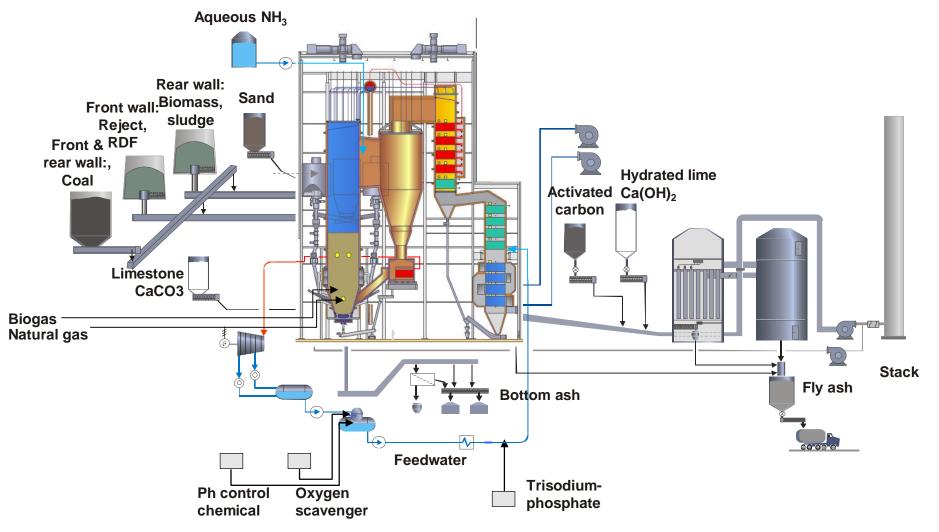
Туре	Moisture %	LHV MJ/kg	Ash % of DS	Nitrogen % of DS	Sulphur % of DS	Chlorine % of DS	% of fuel heat input
Biomass	39	10	1,3				0 - 65
Coal	10	24	10				0 – 97
Rejects	42	13	9				0 – 18
Sludge	55	5	18				0-7
RDF	14	17	20				0 – 12
Biogas							3 - 8
Design ranges	44,25,0	9,628	25	1,5	2,5	0,3	
Natural gas			Start-up				

Emission guarantees

CYMIC boiler - Circulating Fluidized Bed (CFB) technology

	mg/Nm ³
NO _x	200
SO ₂	180
Dust	10
СО	50
HCI	50
HF	14
Cd+TI	0,05
Hg	0,05
Sb+As+Pb+Cr+Co+Cu+Mn+Ni+V	0,5
Dioxins and furans, I-TEQ, ng/Nm ³	0,1
TOC	10

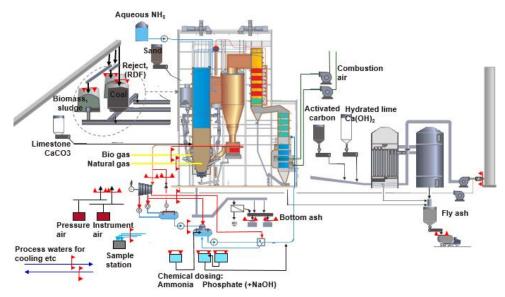
Values are at dry gas corrected to $6\% O_2$ (dry)



Description of Basic Components

Component	Dunaujvaros		
Furnace	Extended lining		
Grid	Directional nozzle		
PSH	Back pass		
SSH	Back pass		
TSH	FBHE		
AH	Tubular		
Emission control	Limestone, SNCR, BHF, HL, AC		
Corrosion management	Steam Data, FBHE (opt. Additive injection)		

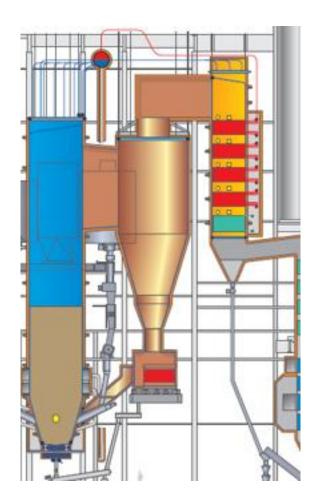
Overview of the Plant Systems



Main systems in boiler plant (1/2)

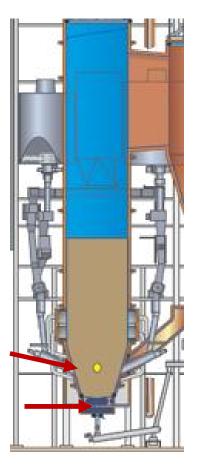
By Valmet's system definition

- 1. Feed water system
- 2. Boiler water and steam system
- 3. Sootblowing system
- 4. Blow down system
- 5. Combustion air system
- 6. Flue gas system
- 7. Flue gas treatment
- 8. Aqueous ammonia system
- 9. Limestone feeding system
- 10. N/A (Sulphur feeding system: not applicable)
- **11.** Solid fuel feeding system
- 12. Sand feeding system
- 13. Bottom ash system
- 14. Fly ash system
- 15. Auxiliary fuel systems
- 16. Cooling and service water systems


- 17. Boiler plant safety systems
- 18. Compressed air and instrument air system
- 19. Civil construction
- 20. Auxiliary steam systems
- 21. Sampling and analyzing system
- 22. Chemical dosing system
- 23. Ventilation system

2. Boiler water and steam system

- Ÿ Economizers (5 pcs), bare tube
- Ÿ Steam drum
- Ÿ Steam generator:
 - furnace walls (inc. refractory)
 - loop seal + cyclone walls (incl. refractory)
 - 2nd pass walls
- Primary (2 pcs), Secondary (2 pcs) and Tertiary superheaters (1 pc)
- Y Steam attemperators (3 pcs in 2 stages)

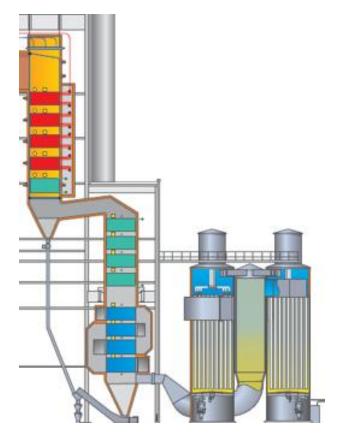

5. Combustion air system

Primary air

- Ÿ Primary air fan (1 pc)
 - Combustion (fluidizing) air
 - Fuel feeding air (cooling, purging, sealing)
- Ÿ Steam coil primary air preheater
- Ÿ Flue gas air preheaters (2 pcs)

Secondary air

- Ÿ Secondary air fan (1 pc)
 - Combustion (staging) air
 - Combustion air to start-up burners
 - Combustion air to gas lances
 - Sand feeding air (purging and cooling)
- Ÿ Steam coil primary air preheater
- Ÿ Flue gas air preheaters (2 pcs)



6. Flue gas system

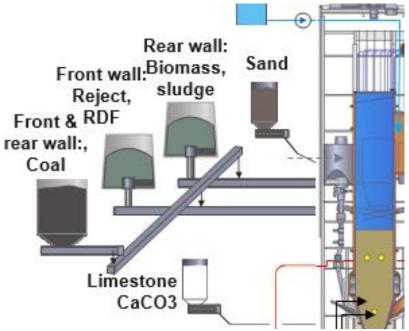
Ÿ Furnace

- Ÿ Cyclone and Loopseal
- Ÿ Manifold duct
- Ÿ 2nd pass
- Ÿ 3rd pass
- Ÿ Flue gas ducting and dampers
- Ÿ Bag House Filter (BHF)
- Flue gas (induced draft) fan (1 pc)
- Ÿ Flue gas recirculation fan (1 pc)
- Ÿ Recirculation gas ducting and nozzles
- Ÿ Stack and CEMS (not by Valmet)

11. Solid fuel feeding system

Front and rear wall

Reject + RDF (yellow):


Ÿ Feeding to front wall

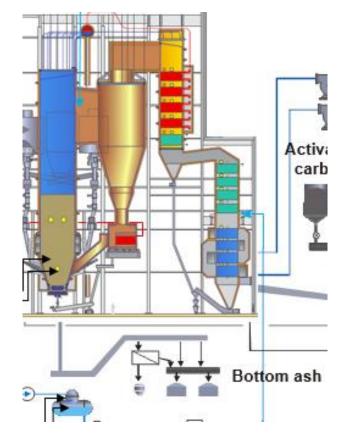
Biomass + sludge (brown):

- Ÿ Feeding to rear wall
- Ÿ Reject silo can also be utilized to bio/sludge feeding

Coal to front and rear wall (red)

Provide a provide a second seco

13. Bottom ash system


Bottom ash:

- Ÿ Bottom ash hoppers
- Ÿ Water cooled screws
- Ÿ Drag chain conveyor

Bottom + loopseal ash handling,

recycling and discharging:

- Y Magnet with a drop pipe for separated metal particles
- Ÿ Sieve
- Pneumatic transmitter for sieved returnable bed material (fines)
- Ÿ Discharge conveyor to containers

Conclusions

Y Fuel based CYMIC CFB concepts have been created to

- Fossil fuels
- Bio / Multi Fuel
- Recycled Wood
- SRF
- Y CYMIC for Bio/Multifuel in Hamburger Hungária Power, Dunaújváros, Hungary plant has proven it's performance
 - Taking over of the boiler 22.3.2016
- Y Key design features in multifuel concept are:
 - High efficiency cyclone for good emissions and low erosion rate
 - Robust fuel feeding and bottom ash equipment
 - Sophisticated final superheater design

